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Abstract

Prolactin and placental lactogens increase during pregnancy and are involved with many aspects of maternal metabolic 
adaptation to pregnancy, likely to impact on fetal growth. The aim of this study was to determine whether maternal 
plasma prolactin or placental lactogen concentrations at 20 weeks of gestation were associated with later birth of small-
for-gestational-age babies (SGA). In a nested case–control study, prolactin and placental lactogen in plasma samples 
obtained at 20 weeks of gestation were compared between 40 women who gave birth to SGA babies and 40 women with 
uncomplicated pregnancies and size appropriate-for-gestation-age (AGA) babies. Samples were collected as part of the 
'screening of pregnancy endpoints' (SCOPE) prospective cohort study. SGA was defined as birthweight <10th customized 
birthweight centile (adjusted for maternal weight, height, ethnicity, parity, infant sex, and gestation age) in mothers who 
remained normotensive. No significant differences were observed in concentrations of prolactin or placental lactogen 
from women who gave birth to SGA babies compared with women with uncomplicated pregnancies. However, a sex-
specific association was observed in SGA pregnancies, whereby lower maternal prolactin concentration at 20 weeks of 
gestation was observed in SGA pregnancies that were carrying a male fetus (132.0 ± 46.7 ng/mL vs 103.5 ± 38.3 ng/mL, 
mean ± s.d., P = 0.036 Student’s t-test) compared to control pregnancies carrying a male fetus. Despite the implications of 
these lactogenic hormones in maternal metabolism, single measurements of either prolactin or placental lactogen at 20 
weeks of gestation are unlikely to be useful biomarkers for SGA pregnancies.

Lay summary

Early identification during pregnancy of small for gestational age (SGA) babies would enable interventions to lower risk 
of complications around birth (perinatal), but current detection rates of these at risk babies is low. Pregnancy hormones, 
prolactin and placental lactogen, are involved in metabolic changes that are required for the mother to support optimal 
growth and development of her offspring during pregnancy. The levels of these hormones may provide a measurable 
indicator (biomarker) to help identify these at risk pregnancies. Levels of these hormones were measured in samples from 
week 20 of gestation from women who went on to have SGA babies and control pregnancies where babies were born at a 
size appropriate for gestation age. Despite the implications of prolactin and placental lactogen in maternal metabolism, no 
significant differences were detected suggesting that single measures of either prolactin or placental lactogen at 20 weeks 
gestation are unlikely to be useful biomarker to help detect SGA pregnancies.
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Introduction

Small for gestational age (SGA) infants account for about 
30–50% of non-anomalous still-born infants and those that 
survive have an increase in the risk for neurodevelopmental 
delays, and cerebral palsy (Baschat 2011, PMMRC 2018). 
Furthermore, the effects of being born SGA impacts on 
health as an adult, with increased risk of cardiovascular 
complications and diabetes in later life (Barker et al. 2007). 
Identification during pregnancy, leading to intervention 
and timely delivery has been reported to lead to a four-fold 
reduction in perinatal death and severe asphyxia (Lindqvist 
& Molin 2005). Identifying SGA before birth is difficult, 
however, and using population-based growth charts less 
than a quarter of all SGA babies are identified before birth 
(Wright et  al. 2006). Using customized antenatal growth 
charts that take into account a range of factors including 
maternal weight, height, and ethnicity can improve 
antenatal identification of SGA infants, but even with this 
improvement detection rates are reported to be only around 
50% (Wright et al. 2006, Roex et al. 2012). Recent analysis 
of a multi-centre cohort study (SCOPE) has identified key 
clinical variables at 15 weeks that are associated with later 
development of SGA (McCowan et al. 2013). In that study, 
only one quarter (24.5%) of all SGA infants were identified 
before birth, highlighting the need to have improved 
methods for detecting SGA during pregnancy (McCowan 
et al. 2013). As indicated in  McCowan et al. (2013), the key 
next step for the development of a personalized algorithm 
for prediction of SGA is the identification of reliable 
biomarkers that can be combined with clinical risk factors 
(McCowan et al. 2013).

One of the key hormones associated with pregnancy 
is prolactin. While prolactin is thought of primarily as 
a lactation hormone (Trott et  al. 2012), it has also been 
implicated in a wide range of other functions (Bole-Feysot 
et  al. 1998, Grattan 2015), particularly during pregnancy 
(Grattan & Le Tissier 2015). Prolactin concentrations increase 
progressively throughout pregnancy in women (Tyson et al. 
1972, Grattan 2001, Romero et  al. 2017, Aghaeepour et  al. 
2018) and the placenta also contributes the closely related 
human placental lactogen (hPL (CSH1), or chorionic 
somatomammotropin) as an additional source of circulating 
hormone that can activate the prolactin receptor. Human 
placental lactogen is secreted from the syncytiotrophoblast 
starting at 6 weeks of gestation and then increasing to 
extremely high levels as gestation advances (Braunstein et al. 
1980). Indeed, recent proteomic studies of human pregnancy 
blood samples have identified prolactin in the top 1% of 
proteins showing increased expression during pregnancy 

(Romero et al. 2017, Aghaeepour et al. 2018), with hPL also 
as one of the highest induced proteins (Aghaeepour et  al. 
2018). Prolactin and hPL play an important role in mediating 
the maternal metabolic adaptations that help to establish a 
positive energy balance to meet the demands of fetal growth 
and also to prepare for subsequent demands of lactation 
(Augustine et  al. 2008, Grattan & Kokay 2008, Newbern & 
Freemark 2011, Grattan & Le Tissier 2015). These adaptations 
ensure appropriate glucose and amino acid availability to 
the fetus (Handwerger 1991). Prolactin may also have a 
more direct role in fetal growth by influencing trophoblast 
invasion in early pregnancy (Stefanoska et al. 2013), which 
when impaired, has been associated with SGA pregnancies 
(Knofler 2010). In animal models, experimental suppression 
of placental lactogenic hormones is associated with fetal 
growth restriction (Lee et  al. 2015). Reduced expression of 
genes for hPL (CSH1) and the placental growth hormone 
variant (GH-V) have been observed in terms of placentas 
associated with SGA newborns (Mannik et  al. 2010), 
suggesting that secretion of these placental hormones may 
be compromised when fetal growth is impaired. Changes in 
expression of imprinted genes that control hPL expression 
(John 2013) have also been associated with changes in fetal 
growth (Jensen et  al. 2014, Janssen et  al. 2016). Similarly, 
animal models involving manipulation of these placental 
regulatory genes also result in changes in fetal growth 
(Tunster et  al. 2016). These data highlight the potential for 
placental hormones to serve as biomarkers of impaired fetal 
growth. Collectively, these data are consistent with the 
hypothesis that changing levels of circulating hormones 
that act through the prolactin receptor, including prolactin 
and growth hormone from the maternal pituitary (and also 
decidua), and hPL (and to a lesser extent GH-V) from the 
placenta, impact on fetal growth and could potentially serve 
as biomarkers of impaired fetal growth. In our previous work, 
we showed that while circulating GH-V correlated with 
fetal growth in large for gestational age babies, there was no 
detectable deficit in SGA pregnancies (Liao et al. 2016). The 
aim of the current study was to investigate if hPL or pituitary-
derived prolactin levels were reduced at 20 weeks of gestation 
in pregnancies that resulted in birth of a SGA baby.

Methods

Study design

The participants were healthy, nulliparous women with 
singleton pregnancies who were recruited in Auckland, 
New Zealand, to be included in the multi center 'screening 
of pregnancy endpoints' (SCOPE) study. The SCOPE study 
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was a prospective, multicentre international screening 
study which aimed to develop screening tests to predict 
preeclampsia, SGA infants, and spontaneous preterm 
births. Ethics approval and consent to participate was 
obtained from local ethics committees, including New 
Zealand (AKX/02/00/364) and all women provided 
written informed consent. Detailed methods of the SCOPE 
study are described elsewhere (McCowan et  al. 2010). For 
the current study, 40 case and 40 control samples were 
randomly selected from the participants who were recruited 
in Auckland, New Zealand, (total of 1296 uncomplicated 
AGA pregnancies and 159 normotensive SGA pregnancies) 
and who had a 20-week plasma specimen.

For the current investigation, plasma samples obtained 
at 20 weeks of gestation were used. Following birth 
(usually within 72 h of giving birth), pregnancy outcome 
data and infant measurements were recorded by research 
midwives. An SGA outcome was conventionally defined 
as a birthweight of less than the tenth customised centile, 
adjusted for maternal height, booking weight, ethnicity, sex 
of infant, and gestation at birth. The control group in this 
nested case–control study comprised of 40 women with 
singleton, uncomplicated pregnancies who delivered babies 
with birthweight >10th customised centile, while the SGA 
group comprised 40 women with singleton, normotensive 
pregnancies who delivered SGA babies. The number of 40 per 
group was determined based on power analysis (for an effect 
size of 0.8) based on unforeseen, preliminary data obtained 
from another study using samples from the SCOPE study.

Assays

Prolactin and placental lactogen concentrations were 
measured in duplicate in 20 weeks of gestation maternal 
plasma samples using commercially available ELISA assays 
(human prolactin ELISA (25-PROHU-E01) and human 
placental lactogen ELISA (20-HPLHU-E01) both from 
Alpco Diagnostics). Assays were performed as described 
in the manufacturer’s instructions. For the hPL assay, the 
intraassay CV was 2.8% and interassay CV was 13.2%. For 
the prolactin assay, the intraassay CV was 3.2% and the 
interassay CV was 5.1%. For each assay plate, both control 
and case studies were included.

Statistical analysis

All hormone data was analyzed for normality using the 
D’Agostino and Pearson normality test. When data was 
normally distributed, a Student’s t-test was used to assess 
the significance between groups, whereas when data was 

not normally distributed, a Mann–Whitney nonparametric 
test was used. The Mann–Whitney test was used for human 
placental lactogen analysis of all combined samples and 
samples from mothers carrying female fetuses; and a two-
tail Student’s t-test was used for the prolactin analysis along 
with analysis for human placental lactogen in samples from 
mothers carrying male fetuses. Since the hypothesis was 
that low lactogenic hormone activity would be associated 
with SGA pregnancies, we also analyzed the data using a 
one-tail test. Previous work has suggested fetal sex-specific 
association of low hPL and reduced fetal growth (Lagerstrom 
et  al. 1990), therefore, the data was also analyzed based 
on fetal sex. Each group was assessed for outliers using 
the ROUT outlier test. Only one sample from the control 
group of the hPL data was removed due to testing positive 
as an outlier (extremely high at 13.43 ng/mL), however, 
the outcome of the statistical analysis did not differ with 
or without the inclusion of this value (with: P = 0.7736, 
without: P = 0.7736 using two-tailed Mann–Whitney tests). 
Statistical differences in the study population characteristics 
between control pregnancies and SGA pregnancies were 
analyzed with Student’s t-test for continuous variables and 
with chi-square tests for categorical variables. For hormone 
data, all values were expressed as mean ± s.d., and for the 
study population characteristics, continuous variables are 
expressed as mean (s.d.) while categorical variables are 
expressed as numbers (percentage).

Results

Maternal characteristics and pregnancy outcomes for the 
normotensive SGA and uncomplicated pregnancy groups 
are detailed in Table 1. There were no differences between 
groups for any maternal characteristics. SGA cases were 
delivered earlier than controls (P = 0.03).

No significant differences were detected in maternal 
plasma placental lactogen or prolactin concentrations 
between the uncomplicated pregnancy and SGA groups 
(placental lactogen: P = 0.7736 two-tailed Mann–Whitney 
tests, prolactin: P = 0.1164 two-tailed t-test) (Fig. 1). 
When specifically investigating the hypothesis that low 
lactogenic hormone activity would be associated with SGA 
pregnancies, there was no statistically significant difference 
in prolactin concentrations in pregnancies that went on to 
have a SGA infant compared to those with uncomplicated 
pregnancies (P = 0.058). To determine whether any trend 
might become more pronounced with more severe SGA, 
the data was further examined using only the samples 
from more extreme SGA cases (<5th centile). No significant 
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differences were found between control and SGA groups in 
this further analysis (Fig. 2).

No differences were seen at week 20 of gestation 
between the uncomplicated pregnancy and SGA groups 
in maternal hPL and prolactin concentrations when the 
fetus was female (placental lactogen: P = 0.1258 two-
tailed Mann–Whitney tests, prolactin: P = 0.9586 two-
tailed t-test) (Fig. 3). When the fetus was male, maternal 
prolactin concentrations were significantly lower at 
20 weeks of gestation in SGA pregnancies compared to 
uncomplicated pregnancies (prolactin: P = 0.0361 two-
tailed t-test) while maternal hPL was similar in both 
groups (placental lactogen: P = 0.1749 two-tailed Mann–
Whitney tests) (Fig. 3).

Discussion

In current clinical practices less than 50% of pregnancies 
with SGA infants are usually detected before birth. Early 
detection of SGA pregnancies and timely delivery improves 
outcomes and is ,therefore, an important research priority. 
The aim of the present study was to determine whether 

Table 1 Study population characteristics at 15 weeks and pregnancy outcomes. Results expressed as n (%) or mean (s.d.). 
Continuous variables: t-test; categorical variables: chi-square or Fisher’s exact test.

Normotensive SGA (n = 40) Uncomplicated pregnancy (n = 40) P value

Maternal details at 15 weeks
 Maternal age (y) 31.6 ± 4.4 31.3 ± 4.4 0.78
 Caucasian ethnicity 37 (93%) 37 (93%) 1.0
 Primigravid 29 (73%) 29 (73%) 1.0
 Single 2 (5%) 0 0.49
 No paid employment 0 3 (7.5%) 0.24
 Socioeconomic index 51 ± 12 48 ±12 0.29
 Smoker 1 (2.5%) 1 (2.5%) 1.0
 BMI category (kg/m2) 0.58
  <24.9 26 (65%) 25 (62.5%)
  25–29.9 10 (25%) 13 (32.5%)
  ≥30.0 4 (10%) 2 (5%)
 Systolic BP (mmHg) 106 ± 10 107 ± 9 0.82
 Diastolic BP (mmHg) 63 ± 9 66 ± 8 0.19
 15-week extreme exercise (yes) 1 (2.5%) 0 1.0
 Gestation at sampling (wks) 19.9 ± 0.6 19.9 ± 0.7 0.86
Pregnancy outcomes
 Birthweight (g) 2710 ± 398 3506± 353 <0.001
 Sex of baby (girl) 18 (45%) 20 (50%) 0.82
 Gestational age at delivery (weeks) 39.2 ± 2.4 40.2 ± 1.1 0.03
 Customised birthweight centile 5.7± 2.6 45.9 ±23.7 <0.001
 Preterm births (<37 weeks) 6 (15%) 0 0.08
 Neonatal unit admission 8 (20%) 2 (5%) 0.09
Specimen analyzes at 20 weeks* 
 Prolactin (ng/mL) 112.6 ± 44.9 128.2 ± 43.2  0.058 (0.116)
 Human placental lactogen (mg/mL) 2.46 ± 0.74 2.64 ±1.84 0.464 (0.774)

*Specimen analyzes are expressed as mean (s.e.m.) and P values for both one-tailed and two-tailed statistical testing is given, with the latter being in 
brackets.

Figure 1 Placental lactogen (A) and prolactin concentrations (B) in 
maternal plasma samples collected from pregnant women at 20 weeks of 
gestation who went on to have babies of normal birth weight (control, n  = 
40) or small for gestational age (SGA, <10th centile, n  = 40). One sample 
was removed from the control placental lactogen group as it was tested 
to be an outlier. Placental lactogen, P = 0.3868 (one-tailed Mann–Whitney 
nonparametric test as data were not normally distributed (SGA group P < 
0.05 D’Agostino and Pearson normality test)). Human prolactin, P = 0.0582 
(Student’s one-tailed t-test). Data shown as mean ± s.d.
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either prolactin or placental lactogen might serve as a 
useful biomarker to help predict SGA infants.

Lactogenic hormones such as prolactin and placental 
lactogen are markedly increased during pregnancy, and 
play important roles in maternal adaptation to support the 
growing fetus (Augustine et al. 2008, Newbern & Freemark 
2011). As well as mammary gland development, prolactin 
receptor activation during pregnancy, by either prolactin or 
placental lactogens, has been implicated in important roles 
in maternal metabolic adaptations, including induction 
of pregnancy-specific glucose regulation to direct glucose 
towards the fetus (Sorenson & Brelje 1997, Baeyens et al. 2016), 
and increasing food intake to meet the energy demands of 
the growing fetus and prepare for lactation (Augustine & 
Grattan 2008, Augustine et al. 2008). Prolactin action in the 
fetus is also involved in a range of developmental and growth 
functions (Winters et  al. 1975, Hauth et  al. 1978, Pullano 
et  al. 1989). Therefore, we hypothesized that inadequate 
prolactin and/or placental lactogen during pregnancy may 
be associated with pregnancies with SGA infants.

We found a trend (P = 0.058) for lower prolactin 
concentrations at 20 weeks of gestation in pregnant 
women who went on to have SGA babies (<10th centile), 
however, this potential relationship was not apparent in 
more extreme SGA (<5th centile) and lends strength to the 
conclusion that a single measurement of prolactin at 20 
weeks of gestation is not a useful biomarker of SGA. When the 
data was analyzed based on the sex of the fetus, we found a 
significant reduction in maternal prolactin concentrations 
in SGA pregnancies compared to uncomplicated 
pregnancies when the fetus was male. However, there was 

still quite an overlap between the prolactin concentrations 
in these two groups, suggesting that maternal prolactin 
concentrations by itself is unlikely to be a useful biomarker 
per se even in pregnancies carrying male fetuses. Whether 
it might contribute to a wider risk score, associated with 
assessment of key clinical variables (McCowan et al. 2013) 
requires further investigation. Overall, there was no 
correlation between plasma prolactin concentrations at 20 
weeks and birth weight (data not shown). Whether plasma 
prolactin may be a useful biomarker of SGA at other time 
points during pregnancy cannot be ruled out by these 
data. At term, hPL has been significantly associated with 
infant birth weight (Janssen et al. 2016) and potentially this 
relationship would be detectable at an earlier time, thus 
future work investigating time points between 20 weeks 
and term would be warranted.

Figure 2 Placental lactogen and prolactin concentrations in maternal 
plasma samples collected from pregnant women at 20 weeks of gestation 
who went on to have babies of normal birth weight (control, n  = 40) or 
SGA (<5thcentile, n  = 10). One sample was removed from the control 
placental lactogen group as it was tested to be an outlier. Human 
placental lactogen P = 0.75, Student’s t-test. Human prolactin P = 0.30, 
Student’s t-test. Data shown as mean ± s.d.

Figure 3 Placental lactogen (hPL) and prolactin concentrations in plasma 
samples from pregnant women carrying boys (top) or girls (bottom). 
Plasma samples were collected at 20 weeks of gestation from women 
who went on to have babies of normal birth weight (control, boys: n  = 20, 
girls: n  = 20) or SGA, boys: n  = 22, girls: n  = 18). Boys: hPL P = 0.164, 
prolactin P = 0.036, Student’s t-test, Girls: hPL P = 0.126, Mann–Whitney 
nonparametric test as data were not normally distributed (SGA group P < 
0.05 D’Agostino and Pearson normality test)), prolactin P = 0.959, 
Student’s t-test. Data shown as mean ± s.d.
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Previous work has indicated that in pregnancies carrying 
female fetuses, maternal hPL is lower in SGA pregnancies 
compared to uncomplicated controls (Lagerstrom et  al. 
1990). We did not observe this difference in hPL and the 
reasons for this inconsistency between previous work and the 
current study are unknown. Previous work was a prospective 
cohort study and hence their SGA group size was smaller 
than the current study. It should be noted, however, that 
the difference in group size between our female SGA group 
(n = 18) and the previous study (n = 11) was not large. It is also 
possible that the definition of SGA in this current study and 
that of SFD (small for date) for the previous study are not 
comparable given the 30 year lapse in time between studies.

Our sample size was only 40 cases and 40 controls. 
Based on the apparent effect size and the high variability, 
we observed for both hormones; a post hoc power analysis 
indicated that a larger study with at least 95 patients 
per group would be required to determine whether the 
observed trend was significant when data was not analyzed 
by fetal sex. Within such a larger study, analysis of clinical 
and other biomarker variables that could be assessed 
alongside prolactin concentrations may strengthen the 
predictive value, especially for male fetuses. Our study only 
assessed one timepoint, and future work should also assess 
the relevance of other time points in pregnancy that may 
be of use for aiding diagnosis of SGA.

Overall, while maternal prolactin concentrations 
did tend to be lower in SGA pregnancies, there was great 
variation and overlap of prolactin concentrations in both 
groups. A significant sex-specific association was observed, 
with SGA pregnancies carrying male fetuses having 
lower maternal prolactin concentrations compared to 
uncomplicated pregnancies carrying male fetuses. Our 
work suggests that neither prolactin nor placental lactogen 
at 20 weeks gestation are likely to be useful biomarkers for 
SGA, however this does not rule out their potential to be 
useful at a different time point of pregnancy.
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